Entropy as a Measure of Uncertainty for PERT Network Completion Time Distributions and Critical Path Probabilities
نویسنده
چکیده
This study proposes that the entropy function provides a simple and useful tool for project managers to better cope with project uncertainty, and therefore better manage projects. The entropy function has a long and established history as a measure of uncertainty in information theory. If selected activities on PERT networks are modified by reducing their activity times by one or more time units, simulations on the original and modified networks can generate output on the entropies of completion time distributions and critical path probabilities. Modified networks can be ranked on a scale of decreasing entropy (or decreasing uncertainty) to determine which activities on the original network have the greatest impact on an overall reduction in project uncertainty. In this manner, these activities would be identified as worthy of additional resources in the real world to implement reductions in their activity times.
منابع مشابه
A New Approach to Approximate Completion Time Distribution Function of Stochastic Pert Networks
The classical PERT approach uses the path with the largest expected duration as the critical path to estimate the probability of completing a network by a given deadline. However, in general, such a path is not the most critical path (MCP) and does not have the smallest estimate for the probability of completion time. The main idea of this paper is derived from the domination structure between ...
متن کاملExpected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کاملA New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملA New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کامل